Highly Diastereoselective Ring Chain Transformation of Butenolides to 5-(*a*-Hydroxyalkyi)pyrazolidin-3-ones¹

Jörg Bohrisch^a, Michael Pätzel^a, Jürgen Liebscher^a, Peter G. Jones^b

- Fachbereich Chemie, Humboldt-Universität Berlin, Hessische Str. 1-2, D-1040 Berlin, Germany.
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-3300 Braunschweig, Germany.

Abstract: Butenolides 1 react with hydrazines 2 by a novel ring chain transformation to 5-(a-hydroxyalkyl)pyrazolidin-3-ones 4 via intermediate 4-hydrazinobutyrolactones 3 in a highly diastereoselective manner.

Ring chain transformations with bridged 1,3-dicarbonyl heteroanalogues represent a useful method for the synthesis of a variety of ω -aminoalkylheteroaromatics.^{2,3} For example, 2-aroylmethylidenepyrrolidines or corresponding 3-chloropropeniminium salts react as 1,3-bi-electrophiles with hydrazine giving ω -aminopropylpyrazoles.³

We became interested in extending this concept to bridged *a*,ß-unsaturated carbonyl compounds as reactants in order to synthesize partially saturated heterocycles in a stereoselective manner.

As a first example we report a ring chain transformation of butenolides 1 with hydrazines 2. If hydrazine or methylhydrazine 2 ($R^2 = H$ or CH_3) is reacted with butenolides 1 in a polar solvent 5-(*a*-hydroxyalkyl)pyrazolidin-3-ones 4 are obtained in high chemical yields and high diastereomeric excess. If the enantiomerically pure starting material 1 ($R^1 = CH_2OH$) was used, only one optical isomer 4c was isolated. Usually traces of 4-hydrazinobutyrolactones 3 are found in the reaction mixture. Kinetic studies (to be reported elsewhere) revealed that these compounds 3 act as intermediates in the formation of the pyrazolidin-3-ones 4 starts with the addition of the hydrazine 2 to the C-C double bond of the *a*,ß-unsaturated system 1. Subsequent attack of the second amino group of the hydrazine moiety at the carbonyl group of the lactone intermediate 3 results in a ring cleavage giving the products 4. If phenylhydrazine 2 ($R^1 =$ phenyl) is used, an addition product (5) can again be observed, but the latter reacts with a second molecule of phenylhydrazine by cleaving the exocyclic

i. H₂O, 2h, 80°C. ii. DMAP, TosCl, pyridine, 2h. iii. H₂O, 10 min, 80°C. iv. ethyl acetate, 3d, r.t..

C-O bond, giving a 4-phenylhydrazinotetrahydrofuran-2-hydrazone 6, rather than undergoing a ring chain transformation. Nevertheless this result is also interesting since reaction of butenolides with two molecules of amines is known to give ring-opened 4-aminobutanamides⁴ rather than 4-aminotetrahydrofuran-2-imines.

Fig. 1: X-Ray structural analysis of 4b⁶

	Ri	R ²	yield / %	ratio of diastereomers
4a 2)	Me	н	63	86 : 14 ¹⁾
4b ³	Мо	Tos	75	94:6 ¹⁾
4c	CH,OH (S)	н	72	>95:5
4d	CH.OH (S)	Tos	30	>95: 5
4e	Me	Mc	61	>95 : 5 1)
5a *	Me	Ph	15	>95 : 5 "
6a ³⁾	Me	Ph	18	90 : 10 ¹⁾

 Table 1:
 Preparation of 5-(a-hydroxyalkyl)pyrazolidin-3-ones 4, 4-phenylhydrazinobutyrolactone 5, and 4-phenylhydrazinotetrahydrofuran-2-hydrazone 6

1) racemic

²⁾ ¹H-NMR (300 MHz, DMSO-d₆, TMS); δ / ppm ; J / Hz : 1.03 (d, 3H, J = 6)CH₃; 2.21 (dd, 1H, J₁ = 16, J₂ = 7)CH₂; 2.30 (dd, 1H, J₁ = 16, J₂ = 7)CH₂; 3.20 (q, 1H, J = 7)CH-N; 3.51 (p, 1H, J = 6) CH-O; 8.91; (ab, 1H)NH ¹³C-NMR (75 MHz, DMSO-d₆, TMS); δ / ppm : 20.8 (CH₃); 33.2 (CH₂); 63.0 (CH-N); 66.0 (CH-O); 175.6 (C = 0)

¹⁵N-NMR (30 MHz, D₂O); δ / ppm : 78.9 (NH-CH); 140.0 (NH-CO)

³¹ ¹H-NMR (300 MHz, DMSO-d₆, TMS); δ / ppm ; J / Hz : 1.11 (d, 3H, J = 6)CH₃; 1.22 (dd, 1H, J₁ = 17, J₂ = 9)CH₂; 1.99 (d, 1H, J = 17)CH₂; 2.42 (s, 3H)Ph-CH₃; 3.54 (p, 1H, J = 6)CH-O; 3.78 (t, 1H, J = 7)CH-N; 5.07 (d, 1H, J = 6)OH; 7.48 (d, 2H, J = 8)CH_{arom}; 7.74 (d, 2H, J = 8)CH_{arom}; 10.73 (s, 1H)NH ¹³C-NMR (75 MHz, DMSO-d₆, TMS); δ / ppm : 20.1 (CH₃); 21.2 (CH₃); 29.7 (CH₂); 64.7 (CH-N); 67.1 (CH-O); 129.0 (CH_{arom}); 130.2 (CH_{arom}); 145.4 (C_{arom}); 174.3 (C=O) m.p. : 206-8 °C

⁴⁾ ¹H-NMR (300 MHz, DMSO-d_e, TMS); δ / ppm ; J / Hz : 1.25 (d, 3H, J = 7)CH₃; 2.30 (dd, 1H, J₁ = 18, J₂ = 3)CH₂; 2.82 (dd, 1H, J₁ = 18, J₂ = 7)CH₂; 3.37 (m, 1H)CH-N; 4.45 (qd, 1H, J₁ = 7, J₂ = 2)CH-O; 4.82 (sb 1H)NH; 6.90 (m, 5H)Ph; 7.62 (sb, 1H)NH-Ph ¹³C-NMR (75 MHz, DMSO-d_e, TMS); δ / ppm : 19.0 (CH₃); 32.6 (CH₂); 60.9 (CH-N); 79.6 (CH-O); 111.8 (CH_{arem}); 117.2 (CH_{arem}); 128.7 (CH_{arem}); 145.4 (C_{arem}); 150.5 (C_{arem}); 176.1 (C = 0) m.p. : 112-4 °C

⁶¹ ¹H-NMR (300 MHz, DMSO-d_g, TMS); δ / ppm ; J / Hz : 1.12 (d, 3H, J = 7)CH₃; 2.72 (dd, 1H, J₁ = 14, J₂ = 3)CH₂; 2.90 (dd, 1H, J₁ = 14, J₂ = 9)CH₂; 4.06 (m, 2H)CH-N, CH-O; 5.02 (d, 1H)NH; 6.52 (m, 3H) CH_{wom}; 6.82 (m, 2H)CH_{wom}; 7.60 (m, 6H)CH_{wom}, NH;); 9.69 (d, 1H, J = 3)NH ¹³C-NMR (75 MHz, DMSO-d_g, TMS); δ / ppm : 20.4 (CH₃); 33.5 (CH₂); 67.5 (CH-N); 80.0 (CH-O); 112.0 (CH_{wom}); 118.0 (CH_{wom}); 122.1 (CH_{wom}); 128.3 (CH_{wom}); 129.1 (CH_{wom}); 130.7 (CH_{wom}); 149.1 (C_{wom}); 151.4 (C_{wom}); 170.1 (C = 0) m.p. : 135-7 °C

The non tosylated products <u>4</u> appeared as oils. Their spectroscopic data are in full agreement with the proposed structures. The regioselectivity of the reaction of methylhydrazine <u>2</u> (R^2 =

 CH_3) with the butenolide 1 ($R^1 = Me$) could be proved by NOE difference ¹H-NMR experiments demonstrating the proximity of $R^2(CH_3)$ and the CHOH molety in the final product <u>4e</u>. The relative stereochemistry of the substituents at both chiral centers could be proved by transforming the N-unsubstituted pyrazolidin-3-one <u>4a</u> to the crystalline 1-tosyl derivative <u>4b</u> and X-ray crystal structure analysis.⁵ The relative configuration (ul) at the two asymmetric carbon atoms implies an approach of the hydrazine <u>2</u> to the C-C double bond of <u>1</u> from the less hindered side, viz. opposite the substituent R¹. A similar stereochemical pathway is reported in the addition of amines to butenolides⁴ and pentenolides.⁶

The extension of the ring chain transformation principle to other bridged 1,3-bielectrophiles (e. g. pentenolides⁶ or a,8-unsaturated lactams) or other binucleophiles is currently under way. Recently the ring chain transformation of pentenolides with hydroxylamines was reported.^{7,8}

Acknowledgement - We thank the Verband der Chemischen Industrie for financial support, Dr. Mügge and Mr. Bloedorn for detailed NMR investigations

References and Notes

- 1. Ring Chain Transformations Part XIII, Part XII see: Pätzel, M.; Knoll, A.; Steincke, T.; von Löwis, M.; Liebscher, J. J. Prakt. Chem./Chem. Ztg.in press.
- 2. Bohrisch, J.; Pätzel, M.; Liebscher, J.; Maas, G. Synthesis in press.
- 3. Bohrisch, J.; Pätzel, M.; Liebscher, J. Synthesis (1991), 1153.
- 4. Jones, J. B.; Young, J. M. Can. J. Chem. (1966) 44, 1059.
- 5. Compound 4b ($C_{12}H_{16}N_2O_4S$) crystallises in the triclinic space group P1 with a = 6.562(3), b = 10.352(6), c = 10.699(6) A, a = 110.25(3), B = 96.91(3), $\gamma = 95.34(3)^\circ$, $U = 669.8A^3$ (at -130°C), Z = 2, Mo-Ka radiation, $2\Theta_{max}$ 50°. The structure was solved by direct methods and refined anisotropically on F^2 (all 2354 independent reflections, H atoms using a riding model) to wR (F^2) 0.080 (conventional R(F) 0.033). Program system: SHELXS/L-92. Full details have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, Federal Republic of Germany. Any request for this material should quote a full literature citation and the reference number CSD 56913.
- 6. Yoda, H.; Shirai, T.; Kawasaki, T.; Katagiri, T.; Takabe, K.; Kimata, K.; Hosoya, K. Chem. Lett. (1991), 793.
- 7. Maciejewski, S.; Panfil, I.; Belzecki, C.; Chmielewski, M. Tetrahedron (1992) 48,10363.
- 8. Panfil, I.; Maciejewski, S.; Belzecki, C.; Chmielewski, M. *Tetrahedron Lett.* (1989) 30, 1527.

(Received in Germany 22 December 1992)